Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Expert Rev Vaccines ; 22(1): 495-500, 2023.
Article in English | MEDLINE | ID: covidwho-20236937

ABSTRACT

INTRODUCTION: The development of a yeast-expressed recombinant protein-based vaccine technology co-developed with LMIC vaccine producers and suitable as a COVID-19 vaccine for global access is described. The proof-of-concept for developing a SARS-CoV-2 spike protein receptor-binding domain (RBD) antigen as a yeast-derived recombinant protein vaccine technology is described. AREAS COVERED: Genetic Engineering: The strategy is presented for the design and genetic modification used during cloning and expression in the yeast system. Process and Assay Development: A summary is presented of how a scalable, reproducible, and robust production process for the recombinant protein COVID-19 vaccine antigen was developed. Formulation and Pre-clinical Strategy: We report on the pre-clinical and formulation strategy used for the proof-of-concept evaluation of the SARS-CoV-2 RBD vaccine antigen. Technology Transfer and Partnerships: The process used for the technology transfer and co-development with LMIC vaccine producers is described. Clinical Development and Delivery: The approach used by LMIC developers to establish the industrial process, clinical development, and deployment is described. EXPERT OPINION: Highlighted is an alternative model for developing new vaccines for emerging infectious diseases of pandemic importance starting with an academic institution directly transferring their technology to LMIC vaccine producers without the involvement of multinational pharma companies.


Subject(s)
COVID-19 , Saccharomyces cerevisiae , Humans , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Technology , Recombinant Proteins/genetics , Antibodies, Viral , Antibodies, Neutralizing
2.
EClinicalMedicine ; 59: 101965, 2023 May.
Article in English | MEDLINE | ID: covidwho-2303712

ABSTRACT

The COVID-19 pandemic has disproportionately impacted immunocompromised patients. This diverse group is at increased risk for impaired vaccine responses, progression to severe disease, prolonged hospitalizations and deaths. At particular risk are people with deficiencies in lymphocyte number or function such as transplant recipients and those with hematologic malignancies. Such patients' immune responses to vaccination and infection are frequently impaired leaving them more vulnerable to prolonged high viral loads and severe complications of COVID-19. Those in turn, have implications for disease progression and persistence, development of immune escape variants and transmission of infection. Data to guide vaccination and treatment approaches in immunocompromised people are generally lacking and extrapolated from other populations. The large clinical trials leading to authorisation and approval of SARS-CoV-2 vaccines and therapeutics included very few immunocompromised participants. While experience is accumulating, studies focused on the special circumstances of immunocompromised patients are needed to inform prevention and treatment approaches.

3.
PLoS Negl Trop Dis ; 17(3): e0011236, 2023 03.
Article in English | MEDLINE | ID: covidwho-2293922

ABSTRACT

BACKGROUND: Recombinant Schistosoma mansoni Tetraspanin-2 formulated on Alhydrogel (Sm-TSP-2/Alhydrogel) is being developed to prevent intestinal and hepatic disease caused by S. mansoni. The tegumentary Sm-TSP-2 antigen was selected based on its unique recognition by cytophilic antibodies in putatively immune individuals living in areas of ongoing S. mansoni transmission in Brazil, and preclinical studies in which vaccination with Sm-TSP-2 protected mice following infection challenge. METHODS: A randomized, observer-blind, controlled, Phase 1b clinical trial was conducted in 60 healthy adults living in a region of Brazil with ongoing S. mansoni transmission. In each cohort of 20 participants, 16 were randomized to receive one of two formulations of Sm-TSP-2 vaccine (adjuvanted with Alhydrogel only, or with Alhydrogel plus the Toll-like receptor-4 agonist, AP 10-701), and 4 to receive Euvax B hepatitis B vaccine. Successively higher doses of antigen (10 µg, 30 µg, and 100 µg) were administered in a dose-escalation fashion, with progression to the next dose cohort being dependent upon evaluation of 7-day safety data after all participants in the preceding cohort had received their first dose of vaccine. Each participant received 3 intramuscular injections of study product at intervals of 2 months and was followed for 12 months after the third vaccination. IgG and IgG subclass antibody responses to Sm-TSP-2 were measured by qualified indirect ELISAs at pre- and post-vaccination time points through the final study visit. RESULTS: Sm-TSP-2/Alhydrogel administered with or without AP 10-701 was well-tolerated in this population. The most common solicited adverse events were mild injection site tenderness and pain, and mild headache. No vaccine-related serious adverse events or adverse events of special interest were observed. Groups administered Sm-TSP-2/Alhydrogel with AP 10-701 had higher post-vaccination levels of antigen-specific IgG antibody. A significant dose-response relationship was seen in those administered Sm-TSP-2/Alhydrogel with AP 10-701. Peak anti-Sm-TSP-2 IgG levels were observed approximately 2 weeks following the third dose, regardless of Sm-TSP-2 formulation. IgG levels fell to low levels by Day 478 in all groups except the 100 µg with AP 10-701 group, in which 57% of subjects (4 of 7) still had IgG levels that were ≥4-fold higher than baseline. IgG subclass levels mirrored those of total IgG, with IgG1 being the predominant subclass response. CONCLUSIONS: Vaccination of adults with Sm-TSP-2/Alhydrogel in an area of ongoing S. mansoni transmission was safe, minimally reactogenic, and elicited significant IgG and IgG subclass responses against the vaccine antigen. These promising results have led to initiation of a Phase 2 clinical trial of this vaccine in an endemic region of Uganda. TRIAL REGISTRATION: NCT03110757.


Subject(s)
Schistosomiasis mansoni , Animals , Humans , Mice , Adjuvants, Immunologic , Aluminum Hydroxide , Brazil , Immunoglobulin G , Schistosoma mansoni , Protozoan Vaccines
5.
Comput Biol Med ; 145: 105401, 2022 06.
Article in English | MEDLINE | ID: covidwho-1773222

ABSTRACT

The development of a new vaccine is a challenging exercise involving several steps including computational studies, experimental work, and animal studies followed by clinical studies. To accelerate the process, in silico screening is frequently used for antigen identification. Here, we present Vaxi-DL, web-based deep learning (DL) software that evaluates the potential of protein sequences to serve as vaccine target antigens. Four different DL pathogen models were trained to predict target antigens in bacteria, protozoa, fungi, and viruses that cause infectious diseases in humans. Datasets containing antigenic and non-antigenic sequences were derived from known vaccine candidates and the Protegen database. Biological and physicochemical properties were computed for the datasets using publicly available bioinformatics tools. For each of the four pathogen models, the datasets were divided into training, validation, and testing subsets and then scaled and normalised. The models were constructed using Fully Connected Layers (FCLs), hyper-tuned, and trained using the training subset. Accuracy, sensitivity, specificity, precision, recall, and AUC (Area under the Curve) were used as metrics to assess the performance of these models. The models were benchmarked using independent datasets of known target antigens against other prediction tools such as VaxiJen and Vaxign-ML. We also tested Vaxi-DL on 219 known potential vaccine candidates (PVC) from 37 different pathogens. Our tool predicted 175 PVCs correctly out of 219 sequences. We also tested Vaxi-DL on different datasets obtained from multiple resources. Our tool has demonstrated an average sensitivity of 93% and will thus be a useful tool for prioritising PVCs for preclinical studies.


Subject(s)
Deep Learning , Vaccines , Animals , Computational Biology , Internet , Software
6.
Lancet Public Health ; 7(4): e356-e365, 2022 04.
Article in English | MEDLINE | ID: covidwho-1730183

ABSTRACT

BACKGROUND: Face mask wearing has been an important part of the response to the COVID-19 pandemic. As vaccination coverage progresses in countries, relaxation of such practices is increasing. Subsequent COVID-19 surges have raised the questions of whether face masks should be encouraged or required and for how long. Here, we aim to assess the value of maintaining face masks use indoors according to different COVID-19 vaccination coverage levels in the USA. METHODS: In this computational simulation-model study, we developed and used a Monte Carlo simulation model representing the US population and SARS-CoV-2 spread. Simulation experiments compared what would happen if face masks were used versus not used until given final vaccination coverages were achieved. Different scenarios varied the target vaccination coverage (70-90%), the date these coverages were achieved (Jan 1, 2022, to July 1, 2022), and the date the population discontinued wearing face masks. FINDINGS: Simulation experiments revealed that maintaining face mask use (at the coverage seen in the USA from March, 2020, to July, 2020) until target vaccination coverages were achieved was cost-effective and in many cases cost saving from both the societal and third-party payer perspectives across nearly all scenarios explored. Face mask use was estimated to be cost-effective and usually cost saving when the cost of face masks per person per day was ≤US$1·25. In all scenarios, it was estimated to be cost-effective to maintain face mask use for about 2-10 weeks beyond the date that target vaccination coverage (70-90%) was achieved, with this added duration being longer when the target coverage was achieved during winter versus summer. Factors that might increase the transmissibility of the virus (eg, emergence of the delta [B.1.617.2] and omicron [B.1.1.529] variants), or decrease vaccine effectiveness (eg, waning immunity or escape variants), or increase social interactions among certain segments of the population, only increased the cost savings or cost-effectiveness provided by maintaining face mask use. INTERPRETATION: Our study provides strong support for maintaining face mask use until and a short time after achieving various final vaccination coverage levels, given that maintaining face mask use can be not just cost-effective, but even cost saving. The emergence of the omicron variant and the prospect of future variants that might be more transmissible and reduce vaccine effectiveness only increases the value of face masks. FUNDING: The Agency for Healthcare Research and Quality, the National Institute of General Medical Sciences, the National Science Foundation, the National Center for Advancing Translational Sciences, and the City University of New York.


Subject(s)
COVID-19 , Vaccination Coverage , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Masks , Pandemics/prevention & control , SARS-CoV-2
8.
Protein Expr Purif ; 190: 106003, 2022 02.
Article in English | MEDLINE | ID: covidwho-1474960

ABSTRACT

SARS-CoV-2 protein subunit vaccines are currently being evaluated by multiple manufacturers to address the global vaccine equity gap, and need for low-cost, easy to scale, safe, and effective COVID-19 vaccines. In this paper, we report on the generation of the receptor-binding domain RBD203-N1 yeast expression construct, which produces a recombinant protein capable of eliciting a robust immune response and protection in mice against SARS-CoV-2 challenge infections. The RBD203-N1 antigen was expressed in the yeast Pichia pastoris X33. After fermentation at the 5 L scale, the protein was purified by hydrophobic interaction chromatography followed by anion exchange chromatography. The purified protein was characterized biophysically and biochemically, and after its formulation, the immunogenicity was evaluated in mice. Sera were evaluated for their efficacy using a SARS-CoV-2 pseudovirus assay. The RBD203-N1 protein was expressed with a yield of 492.9 ± 3.0 mg/L of fermentation supernatant. A two-step purification process produced a >96% pure protein with a recovery rate of 55 ± 3% (total yield of purified protein: 270.5 ± 13.2 mg/L fermentation supernatant). The protein was characterized to be a homogeneous monomer that showed a well-defined secondary structure, was thermally stable, antigenic, and when adjuvanted on Alhydrogel in the presence of CpG it was immunogenic and induced high levels of neutralizing antibodies against SARS-CoV-2 pseudovirus. The characteristics of the RBD203-N1 protein-based vaccine show that this candidate is another well suited RBD-based construct for technology transfer to manufacturing entities and feasibility of transition into the clinic to evaluate its immunogenicity and safety in humans.


Subject(s)
COVID-19 Vaccines , Gene Expression , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , COVID-19 Vaccines/pharmacology , Humans , Mice , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/pharmacology
9.
Annu Rev Med ; 73: 55-64, 2022 01 27.
Article in English | MEDLINE | ID: covidwho-1463046

ABSTRACT

The rapid development and deployment of mRNA and adenovirus-vectored vaccines against coronavirus disease 2019 (COVID-19) continue to astound the global scientific community, but these vaccine platforms and production approaches have still not achieved global COVID-19 vaccine equity. Immunizing the billions of people at risk for COVID-19 in the world's low- and middle-income countries (LMICs) still relies on the availability of vaccines produced and scaled through traditional technology approaches. Vaccines based on whole inactivated virus (WIV) and protein-based platforms, as well as protein particle-based vaccines, are the most produced by LMIC vaccine manufacturing strategies. Three major WIV vaccines are beginning to be distributed widely. Several protein-based and protein particle-based vaccines are advancing with promising results. Overall, these vaccines are exhibiting excellent safety profiles and in some instances have shown their potential to induce high levels of virus neutralizing antibodies and T cell responses (and protection) both in nonhuman primates and in early studies in humans. There is an urgent need to continue accelerating these vaccines for LMICs in time to fully vaccinate these populations by the end of 2022 at the latest. Achieving these goals would also serve as an important reminder that we must continue to maintain expertise in producing multiple vaccine technologies, rather than relying on any individual platform.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , SARS-CoV-2 , Vaccines, Inactivated
10.
J Infect Dis ; 224(6): 938-948, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1429242

ABSTRACT

BACKGROUND: With multiple coronavirus disease 2019 (COVID-19) vaccines available, understanding the epidemiologic, clinical, and economic value of increasing coverage levels and expediting vaccination is important. METHODS: We developed a computational model (transmission and age-stratified clinical and economics outcome model) representing the United States population, COVID-19 coronavirus spread (February 2020-December 2022), and vaccination to determine the impact of increasing coverage and expediting time to achieve coverage. RESULTS: When achieving a given vaccination coverage in 270 days (70% vaccine efficacy), every 1% increase in coverage can avert an average of 876 800 (217 000-2 398 000) cases, varying with the number of people already vaccinated. For example, each 1% increase between 40% and 50% coverage can prevent 1.5 million cases, 56 240 hospitalizations, and 6660 deaths; gain 77 590 quality-adjusted life-years (QALYs); and save $602.8 million in direct medical costs and $1.3 billion in productivity losses. Expediting to 180 days could save an additional 5.8 million cases, 215 790 hospitalizations, 26 370 deaths, 206 520 QALYs, $3.5 billion in direct medical costs, and $4.3 billion in productivity losses. CONCLUSIONS: Our study quantifies the potential value of decreasing vaccine hesitancy and increasing vaccination coverage and how this value may decrease with the time it takes to achieve coverage, emphasizing the need to reach high coverage levels as soon as possible, especially before the fall/winter.


Subject(s)
COVID-19 Vaccines/economics , Cost-Benefit Analysis , Vaccination/economics , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Humans , Models, Economic , SARS-CoV-2 , United States , Vaccination/statistics & numerical data
12.
Sci Rep ; 11(1): 17626, 2021 09 02.
Article in English | MEDLINE | ID: covidwho-1392887

ABSTRACT

Antigen identification is an important step in the vaccine development process. Computational approaches including deep learning systems can play an important role in the identification of vaccine targets using genomic and proteomic information. Here, we present a new computational system to discover and analyse novel vaccine targets leading to the design of a multi-epitope subunit vaccine candidate. The system incorporates reverse vaccinology and immuno-informatics tools to screen genomic and proteomic datasets of several pathogens such as Trypanosoma cruzi, Plasmodium falciparum, and Vibrio cholerae to identify potential vaccine candidates (PVC). Further, as a case study, we performed a detailed analysis of the genomic and proteomic dataset of T. cruzi (CL Brenner and Y strain) to shortlist eight proteins as possible vaccine antigen candidates using properties such as secretory/surface-exposed nature, low transmembrane helix (< 2), essentiality, virulence, antigenic, and non-homology with host/gut flora proteins. Subsequently, highly antigenic and immunogenic MHC class I, MHC class II and B cell epitopes were extracted from top-ranking vaccine targets. The designed vaccine construct containing 24 epitopes, 3 adjuvants, and 4 linkers was analysed for its physicochemical properties using different tools, including docking analysis. Immunological simulation studies suggested significant levels of T-helper, T-cytotoxic cells, and IgG1 will be elicited upon administration of such a putative multi-epitope vaccine construct. The vaccine construct is predicted to be soluble, stable, non-allergenic, non-toxic, and to offer cross-protection against related Trypanosoma species and strains. Further, studies are required to validate safety and immunogenicity of the vaccine.


Subject(s)
Computational Biology/methods , Vaccines/immunology , Vaccinology/methods , Bacterial Vaccines/immunology , Chagas Disease/immunology , Chagas Disease/prevention & control , Cholera/immunology , Cholera/prevention & control , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Vaccines/immunology , Trypanosoma cruzi/immunology , Vibrio cholerae/immunology
14.
EClinicalMedicine ; 39: 101053, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1336375

ABSTRACT

A Lancet Commission for COVID-19 task force is shaping recommendations to achieve vaccine and therapeutics access, justice, and equity. This includes ensuring safety and effectiveness harmonized through robust systems of global pharmacovigilance and surveillance. Global production requires expanding support for development, manufacture, testing, and distribution of vaccines and therapeutics to low- and middle-income countries (LMICs). Global intellectual property rules must not stand in the way of research, production, technology transfer, or equitable access to essential health tools, and in context of pandemics to achieve increased manufacturing without discouraging innovation. Global governance around product quality requires channelling widely distributed vaccines through WHO prequalification (PQ)/emergency use listing (EUL) mechanisms and greater use of national regulatory authorities. A World Health Assembly (WHA) resolution would facilitate improvements and consistency in quality control and assurances. Global health systems require implementing steps to strengthen national systems for controlling COVID-19 and for influenza vaccinations for adults including pregnant and lactating women. A collaborative research network should strive to establish open access databases for bioinformatic analyses, together with programs directed at human capacity utilization and strengthening. Combating anti-science recognizes the urgency for countermeasures to address a global-wide disinformation movement dominating the internet and infiltrating parliaments and local governments.

16.
Sci Immunol ; 6(61)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1315792

ABSTRACT

Ongoing SARS-CoV-2 vaccine development is focused on identifying stable, cost-effective, and accessible candidates for global use, specifically in low and middle-income countries. Here, we report the efficacy of a rapidly scalable, novel yeast expressed SARS-CoV-2 specific receptor-binding domain (RBD) based vaccine in rhesus macaques. We formulated the RBD immunogen in alum, a licensed and an emerging alum adsorbed TLR-7/8 targeted, 3M-052-alum adjuvants. The RBD+3M-052-alum adjuvanted vaccine promoted better RBD binding and effector antibodies, higher CoV-2 neutralizing antibodies, improved Th1 biased CD4+T cell reactions, and increased CD8+ T cell responses when compared to the alum-alone adjuvanted vaccine. RBD+3M-052-alum induced a significant reduction of SARS-CoV-2 virus in respiratory tract upon challenge, accompanied by reduced lung inflammation when compared with unvaccinated controls. Anti-RBD antibody responses in vaccinated animals inversely correlated with viral load in nasal secretions and BAL. RBD+3M-052-alum blocked a post SARS-CoV-2 challenge increase in CD14+CD16++ intermediate blood monocytes, and Fractalkine, MCP-1, and TRAIL in the plasma. Decreased plasma analytes and intermediate monocyte frequencies correlated with reduced nasal and BAL viral loads. Lastly, RBD-specific plasma cells accumulated in the draining lymph nodes and not in the bone marrow, contrary to previous findings. Together, these data show that a yeast expressed, RBD-based vaccine+3M-052-alum provides robust immune responses and protection against SARS-CoV-2, making it a strong and scalable vaccine candidate.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Saccharomycetales/genetics , Spike Glycoprotein, Coronavirus/genetics , Administration, Inhalation , Administration, Intranasal , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cell Line , Cytokines/immunology , Humans , Immunoglobulin G/immunology , Lung/pathology , Macaca mulatta , Male , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/immunology , Viral Load
18.
Appl Microbiol Biotechnol ; 105(10): 4153-4165, 2021 May.
Article in English | MEDLINE | ID: covidwho-1219527

ABSTRACT

A SARS-CoV-2 RBD219-N1C1 (RBD219-N1C1) recombinant protein antigen formulated on Alhydrogel® has recently been shown to elicit a robust neutralizing antibody response against SARS-CoV-2 pseudovirus in mice. The antigen has been produced under current good manufacturing practices (cGMPs) and is now in clinical testing. Here, we report on process development and scale-up optimization for upstream fermentation and downstream purification of the antigen. This includes production at the 1-L and 5-L scales in the yeast, Pichia pastoris, and the comparison of three different chromatographic purification methods. This culminated in the selection of a process to produce RBD219-N1C1 with a yield of >400 mg per liter of fermentation with >92% purity and >39% target product recovery after purification. In addition, we show the results from analytical studies, including SEC-HPLC, DLS, and an ACE2 receptor binding assay that were performed to characterize the purified proteins to select the best purification process. Finally, we propose an optimized upstream fermentation and downstream purification process that generates quality RBD219-N1C1 protein antigen and is fully scalable at a low cost. KEY POINTS: • Yeast fermentation conditions for a recombinant COVID-19 vaccine were determined. • Three purification protocols for a COVID-19 vaccine antigen were compared. • Reproducibility of a scalable, low-cost process for a COVID-19 vaccine was shown. Graphical abstract.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , Reproducibility of Results , SARS-CoV-2 , Saccharomycetales , Spike Glycoprotein, Coronavirus
19.
Hum Vaccin Immunother ; 17(8): 2356-2366, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1180453

ABSTRACT

There is an urgent need for an accessible and low-cost COVID-19 vaccine suitable for low- and middle-income countries. Here, we report on the development of a SARS-CoV-2 receptor-binding domain (RBD) protein, expressed at high levels in yeast (Pichia pastoris), as a suitable vaccine candidate against COVID-19. After introducing two modifications into the wild-type RBD gene to reduce yeast-derived hyperglycosylation and improve stability during protein expression, we show that the recombinant protein, RBD219-N1C1, is equivalent to the wild-type RBD recombinant protein (RBD219-WT) in an in vitro ACE-2 binding assay. Immunogenicity studies of RBD219-N1C1 and RBD219-WT proteins formulated with Alhydrogel® were conducted in mice, and, after two doses, both the RBD219-WT and RBD219-N1C1 vaccines induced high levels of binding IgG antibodies. Using a SARS-CoV-2 pseudovirus, we further showed that sera obtained after a two-dose immunization schedule of the vaccines were sufficient to elicit strong neutralizing antibody titers in the 1:1,000 to 1:10,000 range, for both antigens tested. The vaccines induced IFN-γ IL-6, and IL-10 secretion, among other cytokines. Overall, these data suggest that the RBD219-N1C1 recombinant protein, produced in yeast, is suitable for further evaluation as a human COVID-19 vaccine, in particular, in an Alhydrogel® containing formulation and possibly in combination with other immunostimulants.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Mice , Mice, Inbred BALB C , Protein Domains , SARS-CoV-2 , Saccharomyces cerevisiae/genetics , Saccharomycetales , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL